### 2024 ASOC ANSWER BOOKLET-ONLINE

Name: \_\_\_\_\_ School: \_\_\_\_\_ Account Number: \_\_\_\_\_

#### Section A: Multiple choice questions. (30 marks)

Please record your answers from Q1 to Q15 in the exam system.

Section B: Short answer questions (90 marks)

#### **Question 16**

(a)

(b)

(c)

(d)

| $\Box$ SnO <sub>2</sub>    | □ HC1                       | □ SnO                   |
|----------------------------|-----------------------------|-------------------------|
| $\Box$ Sn(OH) <sub>2</sub> | $\Box$ Sn(OCl) <sub>2</sub> | $\Box$ H <sub>2</sub>   |
| □ NaCl                     | $\Box$ Cl <sub>2</sub>      | $\Box$ H <sub>2</sub> O |
| $\Box$ Na <sub>2</sub> O   |                             |                         |

(e)

(f) Increases Stays the same Decreases

(g)

## (h)

# (i)

(j)

# (k)

(l)

(m)

(n)

### (0)

- D PbO
- □ Pb(OH)<sub>3</sub>
- D Pb(OH)4
- $\Box$  PbO<sub>2</sub>
- $\Box$  PbO(NO<sub>3</sub>)
- $\Box$  PbO(NO<sub>3</sub>)<sub>2</sub>
- $\Box$  Pb(NO<sub>3</sub>)<sub>2</sub>
- D Pb(OH)<sub>3</sub>NO<sub>3</sub>

### Question 17

(a)

### (b)

# (c)



(f)

# (g)

## (h)

(i)

7

# (j)

# (k)

(1)

## (m)

(n)

(o)

# (p)

## Question 18

(a)

(b)

| (c) T | The red ca | has | bonding | domains a | nd has | ag | geometry. |
|-------|------------|-----|---------|-----------|--------|----|-----------|
|-------|------------|-----|---------|-----------|--------|----|-----------|

The red p... has \_\_\_\_\_ bonding domains and has a \_\_\_\_\_\_ geometry.

The red n... has \_\_\_\_\_ bonding domains and has a\_\_\_\_\_\_ geometry.

(d)

(e)

### (f)

| F |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
| L |  |  |
|   |  |  |

(g)

| Cell type       | Size (Gbp) |
|-----------------|------------|
| X gamete        | 3.131      |
| Y gamete        |            |
| XX somatic cell |            |
| XY somatic cell |            |

(h)

| 1 | : \ |
|---|-----|
| C | 1)  |

| <pre>j)     The repro is     Its plois     The num is     (k)     [</pre>                    |                                                                         |      |  |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------|--|
| <ul> <li>The repro is</li> <li>Its plois</li> <li>The num is</li> <li>k)</li> <li></li></ul> | (j)                                                                     |      |  |
| k)                                                                                           | <ul> <li>The repro is</li> <li>Its plois</li> <li>The num is</li> </ul> |      |  |
| I)         m)         n)         o)                                                          | (k)                                                                     |      |  |
| l)<br>m)<br>n)                                                                               |                                                                         |      |  |
| m)                                                                                           | (1)                                                                     |      |  |
| m)n)                                                                                         |                                                                         |      |  |
| n)<br>o)                                                                                     | (m)                                                                     |      |  |
| n)<br>                                                                                       |                                                                         | <br> |  |
| o)                                                                                           | (n)                                                                     |      |  |
| (o)                                                                                          |                                                                         |      |  |
|                                                                                              | (0)                                                                     |      |  |
|                                                                                              |                                                                         | <br> |  |
| p)                                                                                           | (p)                                                                     | <br> |  |

(q)

(r)



(s)

### END OF THE ANSWER BOOKLET

#### DATA

| Avogadro constant (N) = $6.022 \times 10^{23}$ mol <sup>-1</sup> | Velocity of light (c) = $2.998 \times 10^8 \text{ m s}^{-1}$ |  |  |  |  |  |
|------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|--|--|
| 1 Faraday = 96 485 coulombs                                      | Density of water at 25 °C = $0.9971 \text{ g cm}^{-3}$       |  |  |  |  |  |
| $1 \text{ A} = 1 \text{ C s}^{-1}$                               | Acceleration due to gravity = $9.81 \text{ m s}^{-2}$        |  |  |  |  |  |
| Universal gas constant (R)                                       | 1 newton (N) = 1 kg m s <sup><math>-2</math></sup>           |  |  |  |  |  |
| 8.314 J K <sup>-1</sup> mol <sup>-1</sup>                        |                                                              |  |  |  |  |  |
| $8.206 \times 10^{-2} \text{ L atm K}^{-1} \text{ mol}^{-1}$     |                                                              |  |  |  |  |  |
| Planck's constant (h) = $6.626 \times 10^{-34}$ J s              | $1 \text{ pascal (Pa)} = 1 \text{ N m}^{-2}$                 |  |  |  |  |  |
| Molar volume of ideal gas                                        | $pH = -\log_{10}[H^+]$                                       |  |  |  |  |  |
| • at 0 °C and 100 kPa = 22.71 L                                  | $pH + pOH = 14.00 \text{ at } 25^{\circ}C$                   |  |  |  |  |  |
| • at 25 °C and 100 kPa = 24.79 L                                 | $K_{\rm a} = \{ [{\rm H}^+] [{\rm A}^-] \} / [{\rm HA}] $    |  |  |  |  |  |
| • at 0 °C and 101.3 kPa = 22.41 L                                | $pH = pK_a + \log_{10}\{[A^-] / [HA]\}$                      |  |  |  |  |  |
| • at 25 °C and 101.3 kPa = 24.47 L                               | PV = nRT                                                     |  |  |  |  |  |
|                                                                  | E = hv                                                       |  |  |  |  |  |
| Surface area of sphere $A = 4\pi r^2$                            | $c = v\lambda$                                               |  |  |  |  |  |

#### **Periodic Table of Elements**

| 1                                                                |                                                                   |                                                    |                                                                          |                                                                         |                                                                         |                                                                      |                                                                          |                                                                          |                                                                          |                                                                          |                                                                          |                                                                          |                                                                          |                                                                          |                                                                                     |                                                                                | 18                                                                              |
|------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 1<br>H<br>1.008                                                  | 2                                                                 |                                                    | ato<br>S<br>ato                                                          | omic num<br>ymb<br>omic weig                                            | ber<br>Ol<br>ght                                                        |                                                                      |                                                                          |                                                                          |                                                                          |                                                                          |                                                                          | 13                                                                       | 14                                                                       | 15                                                                       | 16                                                                                  | 17                                                                             | 2<br>He<br>4.003                                                                |
| 3                                                                | 4                                                                 | N 22                                               |                                                                          |                                                                         |                                                                         |                                                                      |                                                                          |                                                                          |                                                                          |                                                                          |                                                                          | 5                                                                        | 6                                                                        | 7                                                                        | 8                                                                                   | 9                                                                              | 10                                                                              |
| 6.94                                                             | 9.01                                                              |                                                    |                                                                          |                                                                         |                                                                         |                                                                      |                                                                          |                                                                          |                                                                          |                                                                          |                                                                          | <b>B</b><br>10.81                                                        | 12.01                                                                    | <b>N</b><br>14.01                                                        | 16.00                                                                               | <b>F</b><br>19.00                                                              | 20.18                                                                           |
| 11                                                               | 12                                                                |                                                    |                                                                          | -                                                                       | 0                                                                       | -                                                                    | 0                                                                        | 0                                                                        | 10                                                                       |                                                                          | 10                                                                       | 13                                                                       | 14                                                                       | 15                                                                       | 16                                                                                  | 17                                                                             | 18                                                                              |
| 1Na<br>22.99                                                     | 24.31                                                             | 3                                                  | 4                                                                        | 5                                                                       | 6                                                                       | 1                                                                    | 8                                                                        | 9                                                                        | 10                                                                       | 11                                                                       | 12                                                                       | AI<br>26.98                                                              | SI<br>28.09                                                              | P<br>30.97                                                               | S<br>32.07                                                                          | 35.45                                                                          | Ar<br>39.95                                                                     |
| 19                                                               | 20                                                                | 21                                                 | 22                                                                       | 00                                                                      | 04                                                                      | 25                                                                   | 00                                                                       | 07                                                                       | 00                                                                       | 00                                                                       | 00                                                                       | 0.4                                                                      | 0.0                                                                      | 00                                                                       | 0.4                                                                                 | 05                                                                             | 00                                                                              |
|                                                                  | 20                                                                | 21                                                 | 22                                                                       | 23                                                                      | 24                                                                      | 25                                                                   | 26                                                                       | 21                                                                       | 28                                                                       | 29                                                                       | 30                                                                       | 31                                                                       | 32                                                                       | 33                                                                       | 34                                                                                  | 35                                                                             | 36                                                                              |
| K                                                                | Ca                                                                | Sc                                                 | Ti                                                                       | V                                                                       | Cr                                                                      | Mn                                                                   | Fe                                                                       | Co                                                                       | Ni                                                                       | Cu                                                                       | Zn                                                                       | Ga                                                                       | Ge                                                                       | As                                                                       | Se                                                                                  | Br                                                                             | Kr                                                                              |
| K<br>39.10                                                       | Ca<br>40.08                                                       | Sc<br>44.96                                        | 47.87                                                                    | V<br>50.94                                                              | Cr<br>52.00                                                             | 25<br>Mn<br>54.94                                                    | Fe<br>55.85                                                              | Co<br>58.93                                                              | Ni<br>58.69                                                              | Cu<br>63.55                                                              | 2n<br>65.38                                                              | Ga<br>69.72                                                              | 32<br>Ge<br>72.63                                                        | AS<br>74.92                                                              | 34<br>Se<br>78.97                                                                   | Br<br>79.90                                                                    | 83.80                                                                           |
| K<br>39.10<br>37<br>Ph                                           | Ca<br>40.08<br>38<br>Sr                                           | Sc<br>44.96<br>39                                  | 47.87                                                                    | 23<br>V<br>50.94<br>41                                                  | 24<br>Cr<br>52.00<br>42                                                 | <sup>25</sup><br>Mn<br><sup>54.94</sup><br>43                        | 26<br>Fe<br>55.85<br>44                                                  | 27<br>CO<br>58.93<br>45<br>Ph                                            | 28<br>Ni<br>58.69<br>46                                                  | 29<br>Cu<br>63.55<br>47                                                  | <sup>30</sup><br>Zn<br>65.38<br>48                                       | 49                                                                       | 32<br>Ge<br>72.63<br>50                                                  | 33<br>As<br>74.92<br>51                                                  | 34<br>Se<br>78.97<br>52                                                             | <sup>35</sup><br>Br<br>79.90<br>53                                             | 36<br>Kr<br>83.80<br>54                                                         |
| K<br>39.10<br>37<br>Rb<br>85.47                                  | Ca<br>40.08<br>38<br>Sr<br>87.62                                  | Sc<br>44.96<br>39<br>Y<br>88.91                    | 40<br>91.22                                                              | 23<br>V<br>50.94<br>41<br>Nb<br>92.91                                   | 24<br>Cr<br>52.00<br>42<br>Mo<br>95.95                                  | <sup>25</sup><br>Mn<br>54.94<br>43<br>Tc                             | Fe<br>55.85<br>44<br>Ru<br>101.1                                         | 27<br>Co<br>58.93<br>45<br>Rh<br>102.9                                   | 28<br>Ni<br>58.69<br>46<br>Pd<br>106.4                                   | 29<br>Cu<br>63.55<br>47<br>Ag<br>107.9                                   | 30<br>Zn<br>65.38<br>48<br>Cd<br>112.4                                   | Ga<br>69.72<br>49<br>In<br>114.8                                         | 32<br>Ge<br>72.63<br>50<br>Sn<br>118.7                                   | 51<br>Sb<br>121.8                                                        | 52<br>127.6                                                                         | 35<br>Br<br>79.90<br>53<br>I<br>126.9                                          | <sup>36</sup><br>Kr<br>83.80<br>54<br>Xe<br>131.3                               |
| K<br>39.10<br>37<br>Rb<br>85.47<br>55                            | Ca<br>40.08<br>38<br>Sr<br>87.62<br>56                            | Sc<br>44.96<br>39<br>Y<br>88.91                    | 40<br><b>Zr</b><br>91.22<br>72                                           | 23<br>V<br>50.94<br>41<br>Nb<br>92.91<br>73                             | 24<br>Cr<br>52.00<br>42<br>Mo<br>95.95<br>74                            | 25<br>Mn<br>54.94<br>43<br>Tc<br>-<br>75                             | 26<br>Fe<br>55.85<br>44<br>Ru<br>101.1<br>76                             | 27<br>Co<br>58.93<br>45<br>Rh<br>102.9<br>77                             | 28<br>Ni<br>58.69<br>46<br>Pd<br>106.4<br>78                             | 29<br>Cu<br>63.55<br>47<br>Ag<br>107.9<br>79                             | 30<br>Zn<br>65.38<br>48<br>Cd<br>112.4<br>80                             | 31<br>Ga<br>69.72<br>49<br>In<br>114.8<br>81                             | 32<br>Ge<br>72.63<br>50<br>Sn<br>118.7<br>82                             | 33<br>As<br>74.92<br>51<br>Sb<br>121.8<br>83                             | 34<br>Se<br>78.97<br>52<br>Te<br>127.6<br>84                                        | 35<br>Br<br>79.90<br>53<br>I<br>126.9<br>85                                    | <sup>36</sup><br>Kr<br>83.80<br>54<br>Xe<br>131.3<br>86                         |
| K<br>39.10<br>37<br>Rb<br>85.47<br>55<br>Cs                      | Ca<br>40.08<br>38<br>Sr<br>87.62<br>56<br>Ba                      | SC<br>44.96<br>39<br>Y<br>88.91<br>57-71           | 22<br>Ti<br>47.87<br>40<br>Zr<br>91.22<br>72<br>Hf                       | 23<br>V<br>50.94<br>41<br>Nb<br>92.91<br>73<br>Ta                       | 24<br>Cr<br>52.00<br>42<br>Mo<br>95.95<br>74<br>W                       | 25<br>Mn<br>54.94<br>43<br>Tc<br>-<br>75<br>Re                       | 26<br>Fe<br>55.85<br>44<br>Ru<br>101.1<br>76<br>Os                       | 27<br>Co<br>58.93<br>45<br>Rh<br>102.9<br>77<br>Ir                       | 28<br>Ni<br>58.69<br>46<br>Pd<br>106.4<br>78<br>Pt                       | 29<br>Cu<br>63.55<br>47<br>Ag<br>107.9<br>79<br>Au                       | 30<br>Zn<br>65.38<br>48<br>Cd<br>112.4<br>80<br>Hg                       | 31<br>Ga<br>69.72<br>49<br>In<br>114.8<br>81<br>TI                       | 32<br>Ge<br>72.63<br>50<br>Sn<br>118.7<br>82<br>Pb                       | <sup>33</sup><br>As<br>74.92<br>51<br>Sb<br>121.8<br>83<br>Bi            | <sup>34</sup><br>Se<br><sub>78.97</sub><br>52<br>Te<br>127.6<br>84<br>Po            | 35<br>Br<br>79.90<br>53<br>I<br>126.9<br>85<br>At                              | 36<br>Kr<br>83.80<br>54<br>Xe<br>131.3<br>86<br>Rn                              |
| K<br>39.10<br>37<br>Rb<br>85.47<br>55<br>Cs<br>132.9             | Ca<br>40.08<br>38<br>Sr<br>87.62<br>56<br>Ba<br>137.3             | SC<br>44.96<br>39<br>Y<br>88.91<br>57-71           | 22<br>Ti<br>47.87<br>40<br>Zr<br>91.22<br>72<br>Hf<br>178.5              | 23<br>V<br>50.94<br>41<br>Nb<br>92.91<br>73<br>Ta<br>180.9              | 24<br>Cr<br>52.00<br>42<br>Mo<br>95.95<br>74<br>W<br>183.8              | 25<br>Mn<br>54.94<br>43<br>Tc<br>-<br>75<br>Re<br>186.2              | 26<br>Fe<br>55.85<br>44<br>Ru<br>101.1<br>76<br>Os<br>190.2              | 27<br>Co<br>58.93<br>45<br>Rh<br>102.9<br>77<br>Ir<br>192.2              | 28<br>Ni<br>58.69<br>46<br>Pd<br>106.4<br>78<br>Pt<br>195.1              | 29<br>Cu<br>63.55<br>47<br>Ag<br>107.9<br>79<br>Au<br>197.0              | 30<br>Zn<br>65.38<br>48<br>Cd<br>112.4<br>80<br>Hg<br>200.6              | 31<br>Ga<br>69.72<br>49<br>In<br>114.8<br>81<br>TI<br>204.4              | 32<br>Ge<br>72.63<br>50<br>Sn<br>118.7<br>82<br>Pb<br>207.2              | 33<br>As<br>74.92<br>51<br>Sb<br>121.8<br>83<br>Bi<br>209.0              | <sup>34</sup><br>Se<br><sub>78.97</sub><br>52<br>Te<br>127.6<br><sup>84</sup><br>Po | 35<br>Br<br>79.90<br>53<br>126.9<br>85<br>At                                   | 36<br>Kr<br>83.80<br>54<br>Xe<br>131.3<br>86<br>Rn<br>-                         |
| K<br>39.10<br>37<br>Rb<br>85.47<br>55<br>Cs<br>132.9<br>87       | Ca<br>40.08<br>38<br>Sr<br>87.62<br>56<br>Ba<br>137.3<br>88       | Sc<br>44.96<br>39<br>Y<br>88.91<br>57-71           | 22<br>Ti<br>47.87<br>40<br>Zr<br>91.22<br>72<br>Hf<br>178.5<br>104       | 23<br>V<br>50.94<br>41<br>Nb<br>92.91<br>73<br>Ta<br>180.9<br>105       | 24<br>Cr<br>52.00<br>42<br>Mo<br>95.95<br>74<br>W<br>183.8<br>106       | 25<br>Mn<br>54.94<br>43<br>Tc<br>-<br>75<br>Re<br>186.2<br>107       | 26<br>Fe<br>55.85<br>44<br>Ru<br>101.1<br>76<br>Os<br>190.2<br>108       | 27<br>Co<br>58.93<br>45<br>Rh<br>102.9<br>77<br>Ir<br>192.2<br>109       | 28<br>Ni<br>58.69<br>46<br>Pd<br>106.4<br>78<br>Pt<br>195.1<br>110       | 29<br>Cu<br>63.55<br>47<br>Ag<br>107.9<br>79<br>Au<br>197.0<br>111       | 30<br>Zn<br>65.38<br>48<br>Cd<br>112.4<br>80<br>Hg<br>200.6<br>112       | 31<br>Ga<br>69.72<br>49<br>In<br>114.8<br>81<br>TI<br>204.4<br>113       | 32<br>Ge<br>72.63<br>50<br>Sn<br>118.7<br>82<br>Pb<br>207.2<br>114       | 33<br>As<br>74.92<br>51<br>Sb<br>121.8<br>83<br>Bi<br>209.0<br>115       | <sup>34</sup><br>Se<br>78.97<br>52<br>Te<br>127.6<br>84<br>Po<br>-                  | 35<br>Br<br>79.90<br>53<br>I<br>126.9<br>85<br>At<br>-<br>117                  | 36<br>Kr<br>83.80<br>54<br>Xe<br>131.3<br>86<br>Rn<br>-<br>118                  |
| K<br>39.10<br>37<br>Rb<br>85.47<br>55<br>Cs<br>132.9<br>87<br>Fr | Ca<br>40.08<br>38<br>Sr<br>87.62<br>56<br>Ba<br>137.3<br>88<br>Ra | Sc<br>44.96<br>39<br>Y<br>88.91<br>57-71<br>89-103 | 22<br>Ti<br>47.87<br>40<br>Zr<br>91.22<br>72<br>Hf<br>178.5<br>104<br>Rf | 23<br>V<br>50.94<br>41<br>Nb<br>92.91<br>73<br>Ta<br>180.9<br>105<br>Db | 24<br>Cr<br>52.00<br>42<br>Mo<br>95.95<br>74<br>W<br>183.8<br>106<br>Sg | 25<br>Mn<br>54.94<br>43<br>TC<br>-<br>75<br>Re<br>186.2<br>107<br>Bh | 26<br>Fe<br>55.85<br>44<br>Ru<br>101.1<br>76<br>OS<br>190.2<br>108<br>HS | 27<br>Co<br>58.93<br>45<br>Rh<br>102.9<br>77<br>Ir<br>192.2<br>109<br>Mt | 28<br>Ni<br>58.69<br>46<br>Pd<br>106.4<br>78<br>Pt<br>195.1<br>110<br>Ds | 29<br>Cu<br>63.55<br>47<br>Ag<br>107.9<br>79<br>Au<br>197.0<br>111<br>Rg | 30<br>Zn<br>65.38<br>48<br>Cd<br>112.4<br>80<br>Hg<br>200.6<br>112<br>Cn | 31<br>Ga<br>69.72<br>49<br>In<br>114.8<br>81<br>TI<br>204.4<br>113<br>Nh | 32<br>Ge<br>72.63<br>50<br>Sn<br>118.7<br>82<br>Pb<br>207.2<br>114<br>FI | 33<br>As<br>74.92<br>51<br>Sb<br>121.8<br>83<br>Bi<br>209.0<br>115<br>Mc | 34<br>Se<br>78.97<br>52<br>Te<br>127.6<br>84<br>PO<br>-<br>116<br>LV                | <sup>35</sup><br>Br<br>79.90<br>53<br>I<br>126.9<br>85<br>At<br>-<br>117<br>Ts | <sup>зб</sup><br>Kr<br>83.80<br>54<br>Xe<br>131.3<br>86<br>Rn<br>-<br>118<br>Og |

| 57    | 58    | 59    | 60    | 61 | 62    | 63    | 64    | 65    | 66    | 67    | 68    | 69    | 70    | 71    |
|-------|-------|-------|-------|----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| La    | Ce    | Pr    | Nd    | Pm | Sm    | Eu    | Gd    | Tb    | Dy    | Ho    | Er    | Tm    | Yb    | Lu    |
| 138.9 | 140.1 | 140.9 | 144.2 | -  | 150.4 | 152.0 | 157.3 | 158.9 | 162.5 | 164.9 | 167.3 | 168.9 | 173.0 | 175.0 |
| 89    | 90    | 91    | 92    | 93 | 94    | 95    | 96    | 97    | 98    | 99    | 100   | 101   | 102   | 103   |
| Ac    | Th    | Pa    | U     | Np | Pu    | Am    | Cm    | Bk    | Cf    | Es    | Fm    | Md    | No    | Lr    |
| -     | 232.0 | 231.0 | 238.0 | -  |       |       |       |       | -     | 1.5   | -     | 1.0   | - 1   | -     |